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In addition, the induced current on a wire inside

the cavity can be much larger than its counterpart in free space illuminated
by the same incident plane wave at frequencies where the cavity is near
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ABSTRACT

This paper addresses the problem of computing the current induced

in a thin wire located inside a cylindrical cavity with a circumferential
slot when the cavity is illuminated by an incident plane wave. The calcu~-
lation is carried out in two steps. First, the problem of penetration

of the incident field into the cavity is solved by the method of moments
under the assumption that the presence of the wire inside the cavity creates
little or no perturbation of the interior field. Next, the induced current
on the wire is calculated by the following two methods: (i) use of a simple
.analytical.fornula derived from the application of the Wiener-Hopf techniques
to the finite wire problem; (ii) numerical solution of an integral equationm.
Extensive numerical results for the induced current are presented. It is
found that the current is sensitive to the cylinder radius, the cavity
v height, the frequency of excitation, and the wire location, but is relatively
less sensitive to the variation in the slot length. In addition, the induced
current on a wire inside the cavity can be much larger tham its counterpart
in free space illuminated by the same incident plane wave at frequencies

where the cavity is near resomnance.
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I. INTRODUCTION

The penetration of an electromagnetic wave through an aperture into
a cylindrical structure is of current interest because of its application
to EMP, to EMC, and to biological studies. As early as 1949, Sommerfeld
(1] studied the problem of an infinitely long circular cylinder with a
longitudinal slot, illuminated by a normally incident plane wave. Using a
Fourier analysis approach, Sommerfeld reduced the problem to a system ol
infinitely many linear equaticns, but declared resignedly, "We can do
practically nothing with the problem." Silver and Saunders [2] used the
saddle-point integration method for the inversion of Fourier transfogms
and extracted the far field of Sommerfeld's problem. Hitherto, a number
of extensions along this line of work have been reported (3], [4]. With
the advent of high-speed digital computers, Sommerfeld's penetration
problem can now be solved by numerical means [5], [6]. The penetration of
an EM wave into the cylinder through a rectangular aperture was first
carried out by Safavi-Naini, Lee and Mittra (7], [8]. Their problem has
a more complex geometry than Sommerfeld's in that two conducting plates
are introduced inside the cylinder at z = tﬁ to form a cavity, as illus-
trated in Figure 1.

In the present report, and extension of the penetration problem of
Safavi-Naini et al. is investigated; in which a thin wire is added inside
the cavity and the problem is to determine the current induced on the wire.
The wire is oriented parallel to the longitudinal direction of the
cylindrical cavity. If the slot in the cavity wall is also longitudinal,

there is little induced current on the wire. Hence, we concentrate on

1
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Figure 1. An infinitely long cylinder with a cavity and a
longitudinal slot, illuminated by an incident plane wave.




the more interesting case, namely, the slot which is circumferential on the

’ cylindrical cavity wall. The composite geometry of the present problem

is sketched in Figure 2.

Due to the thinness of the wire, it appears reasonable to assume that

the presence of the wire does not perturb the field generated inside the
cavity. Thus, the problem under consideration can be solved in two steps:

(A) Determine the field E inside the cavity as if the wire were

absent.

(B) Uaing‘E as an incident field, determine the induced current

I(z) as if the wire were situated in the free space.
We emphasize that the above two-step approach is anm approximation. The
exact degree of approximation will be studied in a separate report.

The plan for the present report is as follows: In Section II, the
problem of Part (A) with the wire absent is formulated and a system of
infinitely many linear equations derived. The procedures are briefly
described below:

1. The unknown electric field across the aperture is represented

by a Fourier series.

2. Applying the equivalence principle, the aperture is shorted by

a perfect conductor. The effect of the original aperture field

is accounted for by introducing equivalent magnetic currents on

both sides of the shorted aperture.
3. Inside the cavity, the magnetic field produced by the equivalent
i magnetic current is determined via a magnetic vector potential.
: The resultant field is given in the form of a doubly infinite

series of eigenfunctions of the cavity.
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An infinitely long cylinder with a cavity and a wire
inside, illuminated by an incident plane wave through a
circumferential slot on the cavity wall.




4. Exterior to the cavity, the magnetic field is also generated

via a magnetic vector potential, which is partitioned into three
components to represent the incident field, the reflected field,
and that produced by the equivalent magnetic current.

5. The coupled equation from which the unknown aperture electric
field can be determined is developed by enforcing the continuity
of the tangential magnetic field across the aperture.

6. The coupled equation is solved numerically by the method of
moments ([9].

In Section III, the current induced on the wire inside the cavity
when it is illuminated by the field E computed in Part (A) is derived.
Since E is given in terms of a doubly infinite series of eigenfunctiouns
of the cavity, it can be interpreted as a spectrum of plane waves. As a
result, the induced current I(z) can be determined by superimposing the
currents due to each component of the plane wave spectrum. The current

induced by each component of the spectrum is determined by one of the

A —— <v

following two methods:
1. The standard numerical (moment) method based on an integral
equation formulation [10], and v t ¢
2. the simple approximation formula recently developed by Chang,
Lee, and Rispin (11], [12].
It should be noted that both of the above methods apply only if the incident
plane wave is homogeneous. In the present problem, however, the field E
inside the cavity consists of both homogeneous and inhomogeneous plane
wave components. Hence, the above two methods have to be extended by
analytical continuation to cover the case of an incident inhomogeneous

plane wave.
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In Section IV, possible difficulties of numerical computations of
the equations derived ir Sections II and III are considered. Techniques

for improving the convergence rate of the summation procedures are

presented in Section IV. Extensive numerical results are presented in

Section V.




II. FIELD IN THE CAVITY

In this section, the field E excited in the cavity with the wire absent
is derived. The geometry of the problem under consideration in this section
is illustrated in Figure 2, with the wire removed. The conducting circular
cylinder is infinitely long and is of radius a. A cylindrical cavity is
formed inside the cylinder by two conducting plates located at z = th.

The cavity is coupled to exterior excitations through a circumferential
slot on its cylindrical wall. The rectangular slot is of dimension
2c x 2d and centered at (x = a, y = 0, z = 0). The width of the slot is
assumed to be small in terms of wavelength, i.e.,

2kd << 1 . (2-1)
The structure is illuminated by a normally incident plane wave of unit
magnitude described by
. ;cikx

(2-2)

ikx

i e

3=

-
where the time harmonic factor exp(+jwt) has been suppressed and
n = /M/c = 120 7 is the intrinsic impedance of the free space.

The symmetry of the configuration, together with the plane wave
excitation given in Eq. 2-2, dictate that tha tangential electric field
across the aperture be an even function of ¢. Furthermore, the narrowness
of the slot enables us to assume that the aperture field is approximately
constant in z and is z-directed. Thus, the tangential electric field across

~

the aperture E‘ - Ez z can be represented by a Fourier-cosine series:

oot

A Ejcos T ¢ [8] < og, [2] <4 . (2-3)

~
e




In accordance with the boundary condition that E. vanishes at ¢ = :¢0(00 = c/a),

{Fu) are found to be

ru-iﬂz—:;lm W e (2-8)

Due to the assumed direction of the aperture electric vector (or the
equivalent magnetic current), it can be shown that a field TM with reapect
to z is sufficient torepresent the total field inside the cavity. Such

a field can be generated via a z-directed magnetic vector potential

A= A't. The relations between A: and the field components are

2

E ._..L.a“ H .}.aA'

o " Jue ooz o updd
2
a%a, W,

- ——L - - l
o * Joue pagde * Do uap
32

- —-—l— —— 2 - -
z * Joue 332 + k]A‘ . Hz 0 . (2-5)

Inside the cavity, A: is a linear combination of all possible elementary

wave functions that are solutions to the scalar Helmholtz equation [13].

It assumes the form

@«
A‘(o.¢.a) .mgnzo A‘an(ynp)col md cos « .z (2=6)
where
2 2 2 2
/: -un k :% 5
Yn -
i i 9
“n k N k™ < ah X (2
and
an-l‘% M 7 W1 peM (2-8)

8




The constants {Ahn} are unknowns, and {Ju} are the nCh order Bessel

functions of the first kind. Note that with the choices of the
eigenvalues {un) in Eq. 2-8, the boundary conditions that Ep and !¢
be zero at 2z = th are automatically satisfied.

The constants {A'n} in Eq. 2-6 are unknown quantities, and by
enforcing the conditions that E‘ be zero on the cylindrical wall and
equal to E_on the aperture, they can be evaluated in terms of (Eu}.
the expansion coefficients of !. given in Eq. 2-3. First, we evaluate

(referring to Eq. 2-5) at p = a to obtain

2 i A J (v a)cos md cos a z
m,n=0

= Q(9,2) Z E cos [ W ¢ <7, |z| <h (2-9)
u=0

where Q is the characteristic function of the aperture:
1 fol ¢ » l2l24d ,
Q(9,2) =
: 0 ; otherwise. (2.10)

We recognize that Eq. 2-9 is a standard Fourier-Bessel series with

unresolved coefficients (Amn}' Hence, {Aun} are determined by standard

procedures with the results

" g
J4wue cos md. sin a d = (-1'T
€ € M Y hJ (Y a) u=0 g Pu -m

mn on m

m,n = 0,1,2,...

in which em is the Neumann number, defined by

2, m=0
em -
l,m¥0

i i

{ s
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In the region exterior to the cylindrical structure, the symmetry
of the configuration again leads to a ™ field with respect to z. Thus,
the exterior field is also determined via a z-directed magnetic vector
potential A" = ¥z. For reasons which will be obvious later, Y is
partitioned into three wave funcitons: VY = Wi + ¥ + ¥, The first of
these Wi represents the incident plane wave; it is independent of a and
is given by

-2 Z 1— 3, (ko) cos " (2-12)
© 0 €m

The field components of Wi are given in Eq. 2-2. The second wave function
yr represents the rof}ccted wave when the aperture is closed by a perfect

conductor; it assumes the form:

w J (ka) ( )
(kp)cos m (2-13)
w m-O €n (kl)

where (H(z)} are the m ordot Hankel functions of the second kind. The
third wave function ¥° corresponds to the field produced by the equivalent
magnetic current. In contrast to both Vi and Wt. ye depends on a and is

represented by a continuous spectrum of cylindrical waves:

¥" e § cos m fﬂ F @8 (r0)ed®® aa (2-14)
m=0

where (Pn} are unknown functions, and

h (2~-15)

To determine (rm}. we first evaluate B: at p = a to obtain

10
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jaz

. juue Z cos m Y2F (a)ﬂ(z)(ya)o

= Q(¢,2z) Z E cos T ¢ ? |¢|.1 NN § 1 o U (2-16)
u=g M

Then, we multiply both sides of the equation above by cos n$, n = 0,1,2,...,
and after that, integrate the equation over the entire domain of interest.
By invoking the orthogonal properties of {cos no¢}, {Fm} are determined

in terms of {Eu}:

j2wue cos m¢0 sin ad =« (-¥r
E

F (@) =
- € w oy H(z)(ya) u=0 W Pu

(2-17)

a=0,1,2,... .
with {Amn} and {Fm} defined by Eqs. 2-11 and 2-17, the requirement
that the tangential electric field be continuous across the aperture is
; automatically satisfied. However, these definitions, of themselves, do not
ensure the continuity of the tangential magnetic field across the aperture.
To enforce the continuity of the magnetic field, we proceed as follows: In
the region exterior to the cylinder, the three partial magnetic fields
i

H,, Hr, and ®3 (H+ is immaterial) corresponding respectively to the three
¢ ® "p

wave functions defined in Eqs. 2-12 through 2-14 are

i 1_
H, = 2 In '(kp)cos md
¢ jwu m=0 m
® m J (ka)
Hr - —& j— - m H(z)'(kp)cos m .
¢ Juwu m=0Q em Héz)(ka) -

H¢ « 24 Z cos mé Ju yt-‘m(u)lltflz)'(\m)ejmz da . (2-18)

m-0

11
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Inside the cavity H ¢ is given by

2 20 YnAme(an)coa mp cos Q g (2-19)
m,n=

Hence, the desired continuity of the tangential magnetic field across

the aperture now reads

v 1| . o 2)'
— J'(ka) - e R (ka)| cos md
Juu ugo ) " H A (ka) ™

- -1- (2). Jaz
m mz cos m¢ r“u(“)um (ya)e da

0 -0

mZn'Z.o Yol me(Y a)cos md cos o z ; (2-20)

x:lw

lo] < 05 12l 24 .

The above equation can be simplified by recognizing that the term in the

bracket on the LHS is the Wronskian of Bessel functions:

J (ka)
(2), TR | e
J (ka) - n (ka) = .
22) (ka) n’kaﬁ:z) (ka)

By substituting the above result into Eq. 2-20, it becomes

@«
] cos m ry!"(c)ﬂiz)'(ya)cj“ da
ro -

ngn-z-o cos md Y AmJ m(‘vnn)cos .z

m
leoem . |yl <5, l2zlca . (22D
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Applying the method of Galerkin [9], the preceding equation can be solved
numerically. Piflt. we integrate the equation with respect to z over the

aperture; the result is

uzo cos m rZ_QLE;CQ YFm(G)H:'Z)'(Ya) da

2 sin o, d
Z Z cos m¢ —_a Y Ame(Yna)
m,n=0 %
o b ) iMcos md 24 ;  |el < ¥ - (2-22)

Twa =0 ¢ H(Z) (ka)

Next we multiply both sides of the equation above by cos v¢, v = 0,1,2,...,
and the integration of the resultant equation over the entire domain of

interest leads to

8 J‘___sinaad YFm((x)H“(lz)'(Ya) da

® sin and
| - L T i
© m
;ﬁ‘i é--(—;")"—"— 5V =0,1,2,..., (2-23)
m0 m H “’ (ka) ’
m ® @ « - - @

where By stands for

sin(m ~ \))¢0 sin(m + V)¢0

8y © m=-v + m+ Vv v (2-24)

Then, we replace {Am} and {Fm} in Eq. 2-23 by their definitions in Egs.

2-11 and 2-17. After some algebraic manipulations, we arrive at

T e [ﬁl) + A2 . D\J; Vi 01T (2-25)

u=0

13
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where

7} @ 2 (2)0
A(l) 3 -1 EEVCOI m¢o Jﬂ sin and F!, (va) i
w b m=0 em(ri - n?) 0 qu Hiz)(Yl)

- 8puCo8 ™y sin’ a.d J;(Ynﬂ)

(2) i
A - - 2 m——— 5
W b =0 em(ri - ;2) n=0 a:Yn Jm(Ynt) .
and
I

Equation 2-25 is the system of infinitely many linear equations that
we intended to derive. In general, this system of equations cannot be
solved. However, if the series in Eq. 2-3 is truncated at a finite number
N, the system would become a system of N x N algebraic equations, with
which the unknowns {Eu}. u=0,1,2,...N, can be determined by solving the
equations simultaneously by standard procedures such as the method of
Gaussian elimination. After {Eu} are determined, it is a matter of direct
substitution of (Eu} into Eq. 2-5 to obtain the field inside the cavity.

For example, the z-component of the electric field Ez is given by

* R J

L ]

4 u
E = — E (=1)'T
z vh u-ZDO u( ) u

® gina d cos A .z ® cos s J P)

¥ f%’ 3,2 m¢2co :¢07'!(Yn ; chid)
a
n=0 an m=0 em(ru m) Jm(Yna)

p<a, [of cm [2] <n
This completes our derivation for the field inside the cavity due to the

incidence of Eq. 2-2 in the absence of the wire.

14
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III. CURRENT INDUCED ON A WIRE IN THE CAVITY

In this section, the current induced on the wire inside the cavity
when it is illuminated by the field E is derived. We attack the problem
by assuming that the presence of the wire does not perturb the field
generated inside the cavity. It enables us to use E as an incident field
and to determine the induced curremt I(z) as if the wire were situated
in the free space.

With reference to Eq. 2-26, we note that the electric field tangen-
tial to the wire Ez is given in terms of a doubly infinite series of
eigenfunctions of the cavity. The series can be interpreted as a spectrum
of plane waves. Explicitly, Ez is rewritten as

®
E,= L £.(p.0) exp(+jk cos 8 z) ; (3-1)
ne=o

goa el onlelen

where
9. o8 " {%) ' (3-2)
and
. - ;% E ‘ (-1)“PH&sin QES_ § cos m: coszm¢o Jm(Yggl_ i
u=0 n m=0 em(l‘u -m) J (v a)

We interpret each component of the field in Eq. 3-1 as a plane wave in

free space propagating in the direction en with respect to the z-axis.
In this report, two methods are used to compute the current induced

on the wire due to each component of the plane wave spectrum described

' in Eq. 3-1. The first of these methods is based on an integral equation

formulation:
15




2oth,
f 10 (2)K(z,2" a2 = - somuce o?5% %% L (3-0)

:°~h'

The above thin wire scattering problem has been thoroughly studied in

recent ye

* current I

ars, and a number of efficient programs to compute the unknown
il) have been developed. The program developed by Butler [10],

which is based on solving Eq. 3-4 by the method of moments, is adopted

here. Ap

is given

where p i

As 1
wire is e
wavelengt
to use th
and Rispi
are brief

1.

plying the principle of superposition, the induced current I
by
v (0
I(z) = ] £.(0,0I " (2) , (3-5)
n==00
s evaluated at the location of the wire.

s well-known, using moment methods to compute the current on a
xtremely time-consuming when the wire is of the order of several
hs. An alternative method that is suitable for long wires is

e simple approximation formula developed recently by Chang, Lee
n (11], (12]. The techniques used to derive this simple formula
ly described below:

Using a Wiener-Hopf method, the reflection coefficient from the
end of a semi-infinite wire illuminated by a plane wave of unit
amplitude is determined.

By considering the multiple bounces of the current waves, the
current induced on a wire of finite length can be expressed in
terms of two Neumann series involving the just mentioned reflection
coefficient. The series are then summed up into a closed form

to give the desired approximation formula.

16
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The induced current due to each component of the plane-wave spectrum is

" (2)

denoted by In and is given by

r~

(2) bl ,h"" R ' '
In (z2) = C(ﬂ-en) _i-(-;,z—h;r + A(ﬂ-en.hw-l YV (en.hw) U (hw-z )

-

b 30 A 3 1 BT =~ -

E- R(T,h +z')
+ bC(Sn) —E?i?.'ih—w}' + A(en.hvﬂ )V (n‘-en.hw) {i] (hw+z )

+ V(en.l') » (3-6)

where z2' = z - 2y In the above formula, V represents the current induced
on an infinitely long cylinder by a unit plane wave:

R exp(-jkcos G“z')

V(@,2) = - n sin 8 W(kcos 8 ) ° (3-7)
n n
in which W stands for
W= =jnJ (ka sin 6 YA(?) (ka sin 6 ) (3-8)
0' Tw n 0 w W
where JO and Héz) are, respectively, the zeroth-order Bessel functiom of

the first kind and the Hankel function of the second kind, and a, is the
radius of the cylinder. Another universal function U is found in the
simple formula; it represents the current on an infinitely long center-
fed antenna generated by a unit voltage impulse. For a thin-wire antenmna

and for a sufficiently large k:. U can be accurately approximated by

P expi=ik|{z']) =
V@ * - ez ) - 372 - Zatkay) - v (3-9)

where vy = 0.57712... is the Euler's constant. The reflection coefficient

R in Eq. 3-6 is defined by
8 Vo
R(0,2) = - %[:Cn(kawsin —'2') +Y + jlzr- + e_z__ El(jvo)] s (3-10)
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Ve = kz'(l - cos en) A

and El is the exponential integral. Finally, A and C are, respectively,
shorthand notations for

A= R(en.Zhw) - R(Bn.hwfz’) . (3-11)
and

C = R(w—en.Zhw) v (Sﬁ,hw) R(W.Zhw) U (Zhw) - R(Sn.2hw) v (W-Bn.hw)

—rme-mcmms s cruraem caeterncn

2
1 - [R(m,2h ) U(2n )]
» x (3-12)

2
Again, the total induced current is 9btain.d by superimposing all I§ )~

As is illustrated in Figure 3, the electric field of the incident plane
wave is in the 8-direction and has an amplitude tn/sin en . Therefore,

I is relaced to Iéz) by

- I(Z)(z)
I(z) = £ (P, ’ (3-13)
- n-Z“ a sin en

where O is avaluated at the location of the wire.

- A careful scrutiny of the techniques in deriving both Iél) and 1;2)
reveals that the two methods apply only if the incident plane wave is
homogeneocus, i.e., coc2 an < 1 or real incident angle Sn. In the present
problem, however, the field E inside the cavity consists of both homo=-
geneous and inhomogeneous components. Hence, both methods have to be

axtended by analytical continuation to cover the case of an incident

inhomogeneous plane wave.

(1)

Let us first comsider In

which is obtained by solving Eq. 3=-4.

Note that Eq. 3-=4 is developed by equating the axial component of the

18
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Figure 3. A finite length cylinder illuminaced by an incident plane
wave at an oblique angle.
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electric field on the wire and that of the incident field. The tangential
component of the incident electric field is fncxp(+jkc01 an) which

remains valid even in the case when con2 en > 1. Thus no modification

sl

is necessary here, although allowances in the actual computer programming

must be made to adcommodate the rapidly oscillating nature of

VR s 45

exp(+jkcos Snz) when cos On is large.

(2)
n

4 Next, we have to extend the formula of I in Eq. 3-6. In the case

of an inhomogeneous plane wave, sin Gn is pure imaginary, and may be

- 2 . 2 -
sin On 3| ‘/cos On -1 I ¢ cos On 2 R (3=14)

The question is then: '"Which sign in Eq. 3-14 should be used in the

calculated from

4 calculation?" Consider an inhomogeneous plane wave propagating in the

. SN

X - z plane:
-jk(x sin en+z cos en) 2

E =e s cos” B >1 - (3-15)
y n

In order to satisfy the radiation condition, the field must decay (instead

of grow) exponentially as x + +®, This imposes a condition on sin Gn. viz.,

Im(sin Gn) < 0. (3-16)

Thus, the lower sign (minus sign) in Eq. (3-14) must be used in the

s
1
<

calculation of It(\z) from Eqs. 3~7, 3-8, 3-10, and 3-13. Furthermore,

! W in Eq. 3-8 becomes
2 2
We ZIo(kadvcoo Bn-l)Ko(ka ]cos en -1) (3=17)

whe:: IO and Ko are, respectively, the zeroth order modified Bessel functions.
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IV. NUMERICAL COMPUTATIONS

As it stands, the numerical computation of each element of the system
of linear equations in Eq. 2-25 is extremely time-consuming. The
summation of the ratio of Bessal functions often presents another problem
because both the numerator and the denominator could exceed the range of
the computer and yet the quotient is still not small enough to warrant
the termination of the summation process. In this section, a technique
to circumvent the above difficulty is presented. And, at the same time,
it significantly improves the rate of convergence. To best illustrate
this technique, the evaluation of Asi) is discussed in detail.

Besides a multiplying constant, Aﬁi) is rewritten below with the

order of summation and integration interchanged:

(2
2 © g cos mp, H'""(va)
A(l) = fﬂ sin_ ad z mV 0 _m S . (4=1)
0

Ny 2 2 2 0
oy m=0 em(I'u -m) Hm (ya)

Because of the branch point a = k, we partition the above integral into

two parts:

- (2),
A(l) 3 Ik sin2 ad By €08 m¢0 Hm (Ya)
v

2 2 2, ,(2)
0 oY m=0 em(I'u -m) Hm (ya)

da

]
_J‘sinz ad E 8puoo8 ™, Egi“) . (4=2)
k azr m=0 ¢ (Pz - mz) Km(ra)
m U
where {Km} are the mth order modified Bessel functions and T = a2 - kz.

Note that both integrands above have a non-integrable singularity in
the neighborhood of the branch point. Hence, both integrals must be

further partitioned such that the integration of a small region around
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; the branch point is deliberately isolated. Each of the partial integrals
,f would be treated individually in the subsequent paragraphs.

The first integral to be treated is

| k-8 _ 2
3. f sin_od z“ (ya) da (4=3)
uzy

| 0

‘i where § is an arbitrarily small number and Iu represents the summation of
;i Hankel functions. By invoking the recurrence relationship between the

Hankel function and its derivative, Z“ becomes

3
(2) (2)
| H:" (u) © B (u)
[.(u) = =G — + ] o | H—-2], (4=6)
H oV “02) GO - Wl mv umhs(“) u
where u = ya and ;
g_.cos md 1
G = -2 g B R R (4=5) (3

mv 2 i
em(ru -m) ;{

Since the real and imaginary parts of IH have different rates of convergence,

DAL T

they are treated independently as follows: First, by explicitly writing

Yon bl O

(2)

! Hn as Jm + ij, the real part of Z“ reads

; | ]

3 BIET e Jo(w)J, (u) + Yo(u)Yl(u) ;,

| Bol B8 - irighlu) 4 1500 E
0 it '

- ]

i J (I (u) + Y (uY . (u)

: +tl Gy a el m el |

i Jm(u) + Ym(u) | 4

Note that for a given u, the large-order approximations of each term of
the sum can be extracted, which are
JJ 1 + YmYm-

lim
freo Jz + Yz
m m

1 m
u

cia

(4=7)
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and
sin Zmo
lim G = - cos V¢ . (4-8)
s mv 0 m3

By adding and subtracting the large-order approximations from each term

of the sum, Eq. 4-6 becomes

JO'I]. » YOYI. " JmJ 1 YlnYm-]. m
Re{lgh = = 6oy ===+ L (G 3 o2 "
J. + Y =1 J°+ Y
0 0 m m

cos \)¢o sin Zm} cos \)¢0 ® gin 2m¢o
+

" u m2 ‘! u imt In2 (4=9)
The second sum can be evaluated analytically and the result is
® gin 2m¢0 2¢0 .
B, g g I £n(2 sin f) dt g (4=10)
m=1 m 0

The integral above is a thoroughly studied special function, known as
Clausen's integral [14], whose value can be easily determined. The
remaining sum in Eq. 4-9 has to be evaluated numerically. However, as
compared with the sum in Eq. 4~6, which converges at a rate of m-z. the
modified sum converges at a much faster rate of m-a. Furthermore, in
evaluating the mCh order Bessel function Bm (Bm - Jm or Ym). we can

apply the following recurrence formula:
B (w =22 (o) - B (u (4-11)
el u'm m=1 )

However, as is well-known, we should use this recurrence formula with
extreme caution in computing Jm to avoid the so-called "propagation of
error" when 2m/u > 1. In the actual computation, the total sum is broken
down into partial sums of 10, e.g., fromn to n + 9. We first evaluate
J“+a and Jn+5; then, we apply the recurrence formula in both the forward

and backward directions to obtain the rest of Jm. Moreover, we terminate
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the summation by comparing the magnitude of the partial sum with the total

sum. In doing so, we avoid the danger of terminating the summation pre-
maturely in the case 2n0° is a multiple of n (referring to Eq. 4-8).

As a final remark, when ka" > 1, ZH can be approximated by
« 100
Tgw = == Ig» ;o uw>100 . (4=12)

On the other hand, no modification is necessary to sum Im{ZH} because

its large-order approximation is zero.

The second integral of concern is

2
- sin~ ad -
I, l o lg(ta) da (4-13)

where XK represents the summation of the modified Bessel functions {K }.

With the derivative of K written in terms of K and K 3 E reads
m m m=1' &K

K, (V) L
1 K. (v)
B RV 1 6 m-1" ol , (4-14)
YK Oy K0 v) m:l b Km(v) v

in which v = Ta. Since the large-order approximation of each term of the

sum 1is
K (v)
lim :‘lv) +21.8 (4-15)
e m

we evaluate ZK as

Kl(v) cos v¢° % gin 2m¢°

=~ +
ZK Ov Koiv) v -t mz

® Km—]. & cos v¢0 sin 2w0
i S b bt [ 5 (4-16)
me=l m m

The above formula is similar to Eq. 4=9; therefore, it is evaluated by
similar techniques. Furthermore, we extract the large argument approximation
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of J.» which is
Ig¥) = [150) ; v2>150 . (4=17)
Substituting the results of Eqs. 4-16 and 4-17 into Eq. 4-13, we arrive at

m/d 2
2 I 2i8_d § (ta) da

kes T

® lokl)m/d . 2
+ nzl f !l'-‘-;-zﬁi[-:- [t - 3 {xusoa da
=% an/d

2
+{K(150)r sin_od 4, (4-18)

3
V7

By two successive integrations by parts, the last integral above is

transformed into

2
r gin 3“d da = d2 r..c_chz_i dt = - dzci(Z'lT) ’ (4-19)
n/d a 2T

where C, is the cosine integral (15].

The third integral of concern is

K 2 +6§ 2
IS-I ‘1“2 ad ZH(Ya) da = fk _S_}A_z__a_d_ ZK(TQ) da . (4-20)
ket X s

First, we examine the small-argument behaviors of both ZH and ZK; they are

NP SR i
w0 g “m-znl 2

v
ﬂGov
ii: Im{zn} e 2u £nu .
and :
lim | --d § G . (4=21) 7
0 K ™ mv
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It can be easily shown that the real part of 1’3 tends to zero, and its

imaginary part can be approximated by

e sinz kd

R T ) e R : (4-22)
m 3 2:k3 Ln(lm)

Since the forms of A”‘) and (\2,) are similar, analogous techniques

are employed to evaluate (3) ; the result is (besides a multiplying constant)

A2 o tz‘ o I.Gya) - 5 —-,—“-m " Z( ) - & 7 (150)
—7— Yl T a) -
uv a=0 euY J I “n I }

@ linz Q d

h.3
- =) (150) »  (4=23)
S8 W

where N = Integer (kh/w) and

J {u) cos v¢° o gin Zuto
Iyw) = - ‘—('7 2
° » o=l m

s 02' < Jm—l(u) _nf, cos \)00‘ sin zmo
mv J (u) u u Y
o=l m m (4-26)
and
1 (u) cos Vo, * sin 2md
L = oul)' = 1 —
0 m=1 m
® 1 (v) cos v, sin 2md
1 m 0 0
+ 1 (g Lt -2+ .
anl av I‘zus u u m2
(4-25)
The last sum in Eq. 4-23 can be determined as follows:
® 2 2
sin und 1 2nd/h N sin und
3 -3[ £(8)d8 - | . el (4=26
n=N+1 n o n=1 n

where f is the Clausen's integral stated in Eq. 4-10.
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V. NUMERICAL RESULTS

In determining the field inside the cavity with the wire absent,
the series representation of the aperture field in Eq. 2-3 is truncated
at n = N (the series contains N + 1 terms). We must first establish the
convergence of the aperture field with respect to N. The aperture fields
as calculatedwith N = 0, 1, and 2 are shown in Figure 4. We notice that
the aperture fields as computed by N = 1 and that by N = 2 agree reasonably
at the main lobe but not so well at the side lobe. For many practical
cases, the three-term expansion N = 2 is generally sufficiently accurate
for computing the aperture field.

An indication of the accuracy of the field E inside the cavity is
how well does E'sa:isfy the boundary condition on the cavity wall (including
the aperture). In Figure 5, Ez as computed from Eq. 2-26 is plotted as a
function of ¢. In the aperture defined by |¢| < 57.29°, the calculated
Ez agrees extremely well with the two-term expansion of the aperature field
calculated from Eq. 2-3. It drops to less than 0.01% of the aperture
field on the wall where Ez should be ideally zero. Also shown in Figure 5
is Ez at points just behind the aperture, p/a = 0.995. The variations
of Ez with respect to z at p/a = 0.0, 0.5, and 0.8 are sketched in Figure 6.
As a function of decreasing (p/a), E, decreases rapidly from its value
in the aperture, while it increases at an even faster rate from zero on
the cavity wall toward the center of the cavity. These features are
illustrated in Figure 7 where Ez is plotte§ as a function of p at z = 0.0
and z/h = 0.3.

Part B of the problem is to compute the current induced on the wire

inside the cavity. As mentioned in previous sections, the simple (~rmula
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Bz in the aperture as a function of ¢ with N as
a parameter. The input data ar€ a = 0.3A, ¢ = 0.3),
d = 0.015A, h = 0.6A.
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a parameter.

¢ =0.3x, d » 0.015A, h = 0.62, ¢° = 1.
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E; inside the cavity as a function of z with (p/a)
as & parameter. The input data are a = 0.3},
¢c*®0.3A, d = 0.015A, h = 0.6), ¢ = 0.

Figure 6.

30

N A A I s v R T




\ . P s amle e N
\ N<=4—-1
- |
X L.~ 2/M=03)|

LT e
-Tuﬂ \. C
~ SN,
- N\
G ~
har® S
w ~. s
R /z/h 203
/’ T e o ~
- 7 3
0.2 y, i
/
/
/
QiR 7 L
/ .
/
/ | | |
1.0 o)) ; 0.0
p/a

Figure 7. E, inside the cavity as a function of p with (z2/h)
as a parameter. The input data are: a = 0.3},
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developed by Chang, Lee and Rispin [3] must be extended to compute the
current on a finite wire due to an incident inhomogeneous plane wave.
Since the method of moments does not require any modification for
handling the case of an inhomogeneous incident wave, it provides us a
verification of the extended simple formuls. The comparison of the
induced currents on a wire in free space due to a plane wave of unit
strength as computed by both methods is illustrated in Figure 8, and we
notice that the results are in reasonable agreement. Now, we may apply
this extended formula to compute the induced current on a wire inside

the cavity. In Figure 9, the current as calculated by the simple formula
is compared with that obtained by the method of moments. Again, the
agreement between the two results is acceptable. It should be noted

that the current inside the cavity is normalized with respect to the
center current on a wire of the same length in free space. Since the
convergence of the moment method must be established on a case-by-case
basis, the simple formula is used hereafter to compute the induced current
even in the case where the wire is as short as 0.4 wavelength.

Although we have already established that the three-term expansion
is usually adequate to represent the aperture electric field, it is still
appropriate here to examine the convergence of the current induced on a
wire inside the cavity with various numbers of expansions. In Figure 10,
the induced currents as calculated with N = 0, 1, and 2 are sketched.

We see that, as far as the induced current is concerned, the two-term
expansion (N = 1) is sufficient.

Inside a given cavity, it is expected that the induced current on

a given wire with its position fixed would increase with the enlargement
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Figure 10. Induced current on a wire inside the cavity as a
function of 2z with N as a paramecer. The input

data are a = 1.0A, ¢ = 0.6A, d = 0.015), h = 2.2A.
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of the length of the slot 2¢. The induced current at the center of the
wire does increase with c when c is relatively small as compared with
the radius of the cavity a. The center current acquires its peak value
when c/a is about 0.9 and begins to decrease thereafter. These charac-
teristics are deﬁonutratld in Figure 11.

In Figure 12, we show the concci current on the wire as a function
of a, 0.25 < a/A < 0.8, with the other dimensions fixed. We observe that
there are three peaks. The first of these peaks corresponds to the
resonance at which Jo(Yoa) = 0, The second and third peaks correspond
respectively to Jl(Yoa) = 0 and Jo(Yla) = 0., It should be noted that the
resonances would occur more often beyond the range of Figure 12, and
numerical solutions for large a would not be reliable.

The center current on a wire as a function of the length of the
cavity 2h with other dimensions fixed is plotted in Figure 13. Two
peaks are observed in Figure 13. The first peak is related to the
resonance corresponding to Jo(Yla) = 0, but we are unable to analyze
the nature of the smaller peak at h = 1.02A.

Finally, we examine the variation of the induced current with respect
to the frequency of the incident plane wave. The induced currents at
representative frequencies are sketched in Figure 14, which clearly reflects

the alteration of the electrical length of the wire.
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Figure 12. Induced current at the centar of the wire inside the

cavity as & function of cylinder radius a.
data are: c = 0.3), d = 0.015A, h = 0.6, hw = 0.2\,

p/a = 0.1.
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Figure 14. Current distribution induced on a wire inside the
cavity with frequency as a parameter. The input
data are: a = 0.35m, ¢ » 0.25m, d = 0.005m,

h = 0.82m, 4, " 0.001m.
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